Changing the mechanical unfolding pathway of FnIII10 by tuning the pulling strength.
نویسندگان
چکیده
We investigate the mechanical unfolding of the tenth type III domain from fibronectin (FnIII(10)) both at constant force and at constant pulling velocity, by all-atom Monte Carlo simulations. We observe both apparent two-state unfolding and several unfolding pathways involving one of three major, mutually exclusive intermediate states. All three major intermediates lack two of seven native beta-strands, and share a quite similar extension. The unfolding behavior is found to depend strongly on the pulling conditions. In particular, we observe large variations in the relative frequencies of occurrence for the intermediates. At low constant force or low constant velocity, all three major intermediates occur with a significant frequency. At high constant force or high constant velocity, one of them, with the N- and C-terminal beta-strands detached, dominates over the other two. Using the extended Jarzynski equality, we also estimate the equilibrium free-energy landscape, calculated as a function of chain extension. The application of a constant pulling force leads to a free-energy profile with three major local minima. Two of these correspond to the native and fully unfolded states, respectively, whereas the third one can be associated with the major unfolding intermediates.
منابع مشابه
Tuning the mechanical stability of fibronectin type III modules through sequence variations.
Cells can switch the functional states of extracellular matrix proteins by stretching them while exerting mechanical force. Using steered molecular dynamics, we investigated how the mechanical stability of FnIII modules from the cell adhesion protein fibronectin is affected by natural variations in their amino acid sequences. Despite remarkably similar tertiary structures, FnIII modules share l...
متن کاملA structure-based model fails to probe the mechanical unfolding pathways of the titin I27 domain.
We discuss the use of a structure based Cα-Go model and Langevin dynamics to study in detail the mechanical properties and unfolding pathway of the titin I27 domain. We show that a simple Go-model does detect correctly the origin of the mechanical stability of this domain. The unfolding free energy landscape parameters x(u) and ΔG(‡), extracted from dependencies of unfolding forces on pulling s...
متن کاملMechanical unfolding of a beta-hairpin using molecular dynamics.
Single-molecule mechanical unfolding experiments have the potential to provide insights into the details of protein folding pathways. To investigate the relationship between force-extension unfolding curves and microscopic events, we performed molecular dynamics simulations of the mechanical unfolding of the C-terminal hairpin of protein G. We have studied the dependence of the unfolding pathwa...
متن کاملFibronectin Unfolding Revisited: Modeling Cell Traction-Mediated Unfolding of the Tenth Type-III Repeat
Fibronectin polymerization is essential for the development and repair of the extracellular matrix. Consequently, deciphering the mechanism of fibronectin fibril formation is of immense interest. Fibronectin fibrillogenesis is driven by cell-traction forces that mechanically unfold particular modules within fibronectin. Previously, mechanical unfolding of fibronectin has been modeled by applyin...
متن کاملForce-induced unfolding of human telomeric G-quadruplex: a steered molecular dynamics simulation study.
We study the unfolding of a parallel G-quadruplex from human telomeric DNA by mechanical stretching using steered molecular dynamics (MD) simulation. We find that the force curves and unfolding processes strongly depend on the pulling sites. With pulling sites located on the sugar-phosphate backbone, the force-extension curve shows a single peak and the unfolding proceeds sequentially. Pulling ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 96 2 شماره
صفحات -
تاریخ انتشار 2009